
The system-config-printer CUPS administration tool

Tim Waugh (twaugh@redhat.com), September 2007

Introduction

This document aims to give a brief introduction to the CUPS administration tool that was written
for Fedora Core 6, system-config-printer, and the current state of this tool's development.

Although it was written for Fedora it is available in Debian and Ubuntu as well.

In its architecture, the tool takes the form of a GTK+ application written in Python. It uses the
libcups application programming interface (API) provided by CUPS, and it is able to do this with
the use of Python bindings for libcups. The package providing these bindings, pycups, was written
as part of the effort to create the CUPS administration tool.

The libcups API provided by CUPS allows applications to interact with a CUPS server, and the
implementation uses the IPP protocol to do so. In many cases the CUPS server will be on the local
machine but this need not necessarily be the case. Due to the fact that system-config-printer uses
libcups for all interactions with the CUPS server rather than changing configuration files in the
local file system, it is well suited to configuring remote, possibly headless, CUPS servers.

This approach, of using the libcups API for all interactions, is also the one used by the CUPS web
configuration interface. Indeed, the idea of system-config-printer is to provide similar functionality
to the CUPS web interface but with native GTK+ widgets and greater desktop integration.

Inventory of parts

There are three source packages relevant here. They are: pycups, system-config-printer, and hal-
cups-utils.

The pycups CUPS bindings for Python are distributed separately from the graphical elements of
the configuration tool. This is because they may be useful for all sorts of other projects. The web
page for pycups can be found at http://cyberelk.net/tim/pycups and new releases are announced on
freshmeat.net. It is currently at version 1.9.26.

The graphical administration tool is contained in the system-config-printer source package, the
web page for which is at http://cyberelk.net/tim/system-config-printer – again, new releases of this
are announced on freshmeat.net. It is currently at version 0.7.75, with a stable branch 0.7.74.x
(which Fedora 8 will use).

Within the system-config-printer source package can be found the administration tool and, in
addition, a job management applet (“system-config-printer-applet” for want of a better name). This
applet runs when the desktop session starts, displaying a printer icon in the notification area
whenever the user has print jobs queued. Clicking on this icon shows the queued jobs, and allows
them to be cancelled, paused, resumed or (for completed jobs) re-printed.

This job management applet can also run as a normal application without there being an icon in
the notification area. Desktop files are provided both for auto-start (with notification icon) and
from-menu launch (without notification icon).

Lastly, the hal-cups-utils source package provides some hooks into the Hardware Abstraction
Layer (hal.freedesktop.org) to allow automatic queue set-up for locally connected printers. This
package is not (yet?) distributed separately from the source RPM in Fedora.

http://cyberelk.net/tim/pycups
http://hal.freedesktop.org/
http://freshmeat.net/
http://cyberelk.net/tim/system-config-printer
http://freshmeat.net/

The pycups CUPS bindings for Python

Originally the purpose of writing CUPS bindings for Python was in order to implement system-
config-printer in Python. Although the configuration tool project was a complete re-design of an
existing tool, Python is a very good language for rapid prototyping and it also allowed some small
useful sections of the previous tool (such as the SMB printer browsing) to be re-used. The Python
bindings have since proved useful as a diagnostic tool – when a user describes a bug it is simple to
ask them to run a command line like “python -c 'import cups; ...'” and get them report back the
results in order to pin-point the problem.

The idea behind pycups was to get system-config-printer up and running. It was intended to be a
fairly thin layer of bindings to the libcups API. In practice there are some convenience functions
included so as to keep the configuration tool's code a little simpler, so as a result there is not a one-
to-one correlation between the libcups API and that of pycups. The Python doc-strings in pycups
are now in epydoc-format, and so “make doc” creates HTML documentation of the API.

Here, then, is an example of pycups being used from an interactive Python session:
>>> import cups
>>> cups.setUser('root')
>>> cups.setServer('localhost')
>>> c=cups.Connection()

Now c represents a CUPS server connection. It is a Python object with methods. Here is how
we can get a list of the printers on that server (long lines have been truncated to fit on this page):
>>> from pprint import pprint
>>> pprint(c.getPrinters())
{'psc': {'device-uri': 'hp:/usb/PSC_2200_Series?serial=MY2XXXXXCR0G',
 'printer-info': 'HP PSC 2210',
 'printer-is-shared': True,
 'printer-location': "On Sue's right",
 'printer-make-and-model': 'HP PSC 2210 Foomatic/hpijs (recommended)',
 'printer-state': 3,
 'printer-state-message': '',
 'printer-state-reasons': ['none'],
 'printer-type': 36892,
 'printer-uri-supported': 'ipp://localhost:631/printers/psc'},
 'stylus': {'device-uri': 'usb://EPSON/Stylus%20D78',
 'printer-info': 'Epson Stylus D78',
 'printer-is-shared': True,
 'printer-location': 'Between the monitors',
 'printer-make-and-model': 'Epson Stylus D68 Foomatic/gutenprint-ijs-simp…',
 'printer-state': 3,
 'printer-state-message': '',
 'printer-state-reasons': ['none'],
 'printer-type': 167948,
 'printer-uri-supported': 'ipp://localhost:631/printers/stylus'}}

We can also get a list of the IPP attributes for a particular printer (this is trimmed quite heavily
for size):
>>> pprint(c.getPrinterAttributes('stylus'))
{'charset-configured': 'utf-8',
 'charset-supported': ['us-ascii', 'utf-8'],
 'color-supported': True,
 'compression-supported': ['none', 'gzip'],
 'copies-default': 1,
 'copies-supported': (1, 100),
 'device-uri': 'usb://EPSON/Stylus%20D78',
 'document-format-default': 'application/octet-stream',
…
 'job-hold-until-default': 'no-hold',
 'job-hold-until-supported': ['no-hold',
 'indefinite',
 'day-time',
 'evening',
 'night',

 'second-shift',
 'third-shift',
 'weekend'],
…
 'job-sheets-default': ('none', 'none'),
 'job-sheets-supported': ['none',
 'classified',
 'confidential',
 'mls',
 'secret',
 'selinux',
 'standard',
 'te',
 'topsecret',
 'unclassified'],
…
 'number-up-default': 1,
 'number-up-supported': [1, 2, 4, 6, 9, 16],
…
 'printer-error-policy': 'stop-printer',
 'printer-error-policy-supported': ['abort-job', 'retry-job', 'stop-printer'],
…
 'printer-is-accepting-jobs': True,
 'printer-op-policy': 'default',
 'printer-op-policy-supported': ['default'],
…
 'uri-authentication-supported': ['requesting-user-name'],
 'uri-security-supported': ['none']}

Using pycups we can set default options, add queues, manipulate classes, adjust the CUPS server
settings (as with the cupsctl command: another libcups application), print test pages – anything that
the CUPS web interface can do, more or less.

Another part of the libcups API provides support for handling PPD files. Here is a demonstration
of that part of the API being used by pycups:
>>> print c.getPPD('psc')
/tmp/46e68bbfce80a
>>> ppd = cups.PPD('/tmp/46e68bbfce80a')
>>> pprint(dir(ppd))
['__class__',
 …
 '__str__',
 'attributes',
 'conflicts',
 'constraints',
 'findAttr',
 'findNextAttr',
 'findOption',
 'localize',
 'markDefaults',
 'markOption',
 'nondefaultsMarked',
 'optionGroups',
 'writeFd']
>>> for g in ppd.optionGroups:
... print g.name
... for o in g.options:
... print " ", o.keyword, ":", o.text
...
General
 PageSize : Page Size
 PageRegion : PageRegion
 PrintoutMode : Printout Mode
 InputSlot : Media Source
 Duplex : Double-Sided Printing
PrintoutMode
 Quality : Resolution, Quality, Ink Type, Media Type

The CUPS administration tool

The best case scenario for a user plugging in a USB printer is that the computer configures it
automatically, and there is nothing further to do. In some cases it is possible for us to do that.
When the printer is connected, HAL spots the new device and calls into a program in the hal-cups-
package called hal_lpadmin.

This program shares some of the system-config-printer code, notably the class for indexing PPD
files available in CUPS and matching devices to drivers, and does its best to configure a queue for
the printer. The matching is performed using IEEE 1284 Device ID strings: first an exact make and
model match is sought, then a fuzzy match, and finally the printer command languages are
examined in order to try a generic driver. It will always configure a queue, but in the worst case it
will be a text-only queue.

Once the queue is configured, hal_lpadmin makes a D-Bus call on the system bus to announce
the new queue's name, and to indicate how good a match the driver is.

If a user is logged in at the console, the job management applet is waiting for just such a message.
When it receives it, a notification bubble is displayed on the screen showing the name of the new
queue and offering a chance to perform further configuration if desired.

Clicking on the “Configure...” button launches system-config-printer, with the relevant printer
already selected.

The tabs at the top of the pane show the different properties of the queue that can be modified,
including whether it is shared, who may print to it, the PPD options, and default job options.

The server settings can be adjusted by selecting “Server Settings” in the list.

For remote printers it is not so straight-forward. To add a new remote queue the administration
tool must be started “manually” from the menu (System ▸ Administration ▸ Printing on Fedora).
After clicking the New button a wizard is displayed showing the available printer devices and ports.

To add an SMB printer, for instance, click on “Windows Printer via SAMBA”. The Browse
button allows the available SMB printers to be examined.

The SMB share can be verified to check that the authentication details are correct and that the
printer is accessible.

After clicking Forward, the printer manufacturer is selected. At this point there is the opportunity
to provide a PPD file that was supplied with the printer.

The next page in the wizard allows the printer model to be selected.

Finally, the new printer is given a name, as well as a description and location.

The job management applet

When a desktop session is started the job management applet gets launched. Initially it waits for
D-Bus messages before loading GTK+. When it is time for action it loads GTK+ and displays a
printer icon in the notification area. This printer icon is shown sensitive when the current user has
current jobs in the queue, and insensitive otherwise.

There are two reasons for the icon appearing: either the user has submitted a print job, or the user
is at the console and a USB printer has been connected. In this way those not wishing to be affected
by anything to do with printers can be sure that the job management applet is not taking up too
much in the way of resources.

CUPS provides D-Bus signals on the system bus for important events such as a job being
submitted or completed. The applet relies on these signals entirely; it does not poll the server. It is
therefore only useful for a local CUPS scheduler. When a D-Bus signal is received, the applet
queries the job queue for active jobs owned by the current user; when there are such jobs, the icon is
displayed:

Notification bubbles about printer problems that might affect the current user are attached to this
icon.

Clicking on the icon displays the job queue:

The current printer issues can be viewed by selecting a menu item. This corresponds with the
“printer-state-reasons” IPP printer attribute for each printer.

Of course, job management is the main purpose of the application. The job context menu is
pictured here:

If the job management window is needed when the printer icon is not shown (for example, before
a job has been printed), it can be launched from the menu (Applications ▸ System Tools ▸ Manage
Print Jobs on Fedora).

Open issues and future directions

The development of this application is active. Florian Festi (ffesti@redhat.com) wrote system-
config-printer, while I (Tim Waugh) wrote the pycups CUPS bindings for it. I am the maintainer
for pycups, system-config-printer, and hal-cups-utils, all of which are hosted in Subversion
repositories at fedoraproject.org. Florian, myself, and Till Kamppeter have commit access to
system-config-printer, and patches have been submitted by various contributors.

In recent months there have been many large improvements in the code base; however, the nature
of software is that it is never finished. A selection of the issues to be addressed are described
below.

● The user interface is quite “busy” at first glance. There are a lot of widgets in the window at
once and this is not easy to take in when unfamiliar with how the application behaves. It
could perhaps be an improvement to show icons representing printers rather than displaying
a textual tree view. Getting user interfaces right is tricky. It may be that the icons would
look nice but be harder to use than the current state of affairs.

● As the purpose of the application is CUPS administration, extra features in newer versions
of CUPS means there is a certain amount of “catching-up” to be done at the moment. One
case in point is the “auth-info-required” IPP printer attribute implemented in CUPS 1.3. As
I understand it, this feature allows configuration for password-protected printers to have the
security-sensitive details stored separately from the rest of the configuration. This is
especially useful for SMB printers, where currently the password is contained in the device
URI. There is currently no support for this attribute in system-config-printer, nor in pycups.

● Another CUPS 1.3 feature is the ability to fetch a named PPD (as distinct from a PPD in use
for a queue). This is useful for the administration tool when it comes to displaying a useful
interface to the user who is choosing a printer driver. The new libcups function has been
bound in the most recent version of pycups, but a re-worked PPD selection screen in
system-config-printer is still in progress.

● When CUPS 1.4 is ready there will be a facility for fetching job data files. This is
interesting from the point of view of the job management applet. It raises the possibility of
showing job thumbnails, among other things.

● Some work is still needed to make CUPS authentication work “nicely” for those using
system-config-printer. In Fedora the application can be started as root (when the system
password is supplied), but this is far from ideal. In Ubuntu it runs as the current user, and
the first user added to the system is also granted membership of a special group “lpadmin”,
and the shipped CUPS configuration lets users in this group perform administration tasks.

An ideal situation would be for any user at the console to be able to perform administration
tasks. That way, the administration tool could run as the non-root user, and could also add
and configure printers. It may be that ConsoleKit would be useful to this end.

● The job management applet is a recent addition to the system-config-printer package, and
pycups extended its API coverage to the job management functions in libcups for it. The
test page function in the administration tool has very crude controls for cancelling the test
page, but there is no proper integration between the two programs.

● Similarly, D-Bus signals are something that the job management applet catches and system-
config-printer ignores. It would be very useful for system-config-printer to watch for D-Bus
signals about new printers added, state changes, and so on.

Conclusion

One of the reasons the original Red Hat Linux/Fedora printer configuration tool was bad was the
fact that it was trying to be “print server neutral”. It was designed when LPRng was shipped with
Red Hat Linux, and had CUPS support added on afterwards. It was too generic in its approach to
be good at configuring any particular print server.

In choosing to design a tool for configuring CUPS servers, and for the tool to use the libcups API
to do so, I believe that pitfall has been avoided. I hope that system-config-printer has chosen its one
thing to do, and will do it well.

	The system-config-printer CUPS administration tool
	Tim Waugh (twaugh@redhat.com), September 2007
	Introduction
	Inventory of parts
	The pycups CUPS bindings for Python
	The CUPS administration tool
	The job management applet
	Open issues and future directions
	Conclusion

